News

Golnar's talk on NER with LSTM-X
20 Feb 2017

Today in the lab meeting, Golnar will give a talk about Named Entity recognition with LSTM-X. Here is a brief description of her talk: “We will be discussing variations of LSTM tailored for Named Entity recognition and plans for integrating them into GraphNER.”

Ashkan's talk on Real-Time Neural Machine Translation
05 Feb 2017

In the lab meeting tomorrow, Ashkan will give a talk about Real-Time Neural Machine Translation. Here is a brief description of his talk:

Simultaneous translation differs from a more usual consecutive translation. In simultaneous translation, the objective of a translator, or a translation system, is defined as a combination of quality and delay, as opposed to consecutive translation in which translation quality alone matters. In order to minimize delay while maximizing quality, a simultaneous translator must start generating symbols in a target languages before a full source sentence is received. In our meeting, I will talk about the main Ideas and approaches presented in two novel papers in this area of research. Here’s their links: https://arxiv.org/abs/1606.02012 https://arxiv.org/abs/1610.00388

DyNet Paper Discussion
30 Jan 2017

In the lab meeting today, we will be discussing the following paper: Neubig, Graham, et al. “DyNet: The Dynamic Neural Network Toolkit.” arXiv preprint arXiv:1701.03980 (2017).

Nishant's Talk on Out-of-Vocabulary
23 Jan 2017

In the lab meeting today, Nishant will give a talk about handling Out-of-Vocabulary (OOV) words in Machine Translation. Here is a brief description of his talk:

Out-of-vocabulary (OOV) words - words that appear in the recognition task at hand, but not in the training set - are a ubiquitous and difficult problem in machine translation. Data-driven machine translation systems are able to translate words that have been seen in the training corpora, however translating unseen words is still a bottleneck for even the best performing systems. In general, the amount of parallel data is finite which results in infrequent terms to be absent in the training parallel corpora. This lack of information can potentially produce incomplete, erroneous and disfluent translations. In this discussion, we will investigate the different approaches of handling OOVs in Statistical Machine Translation leading up to Neural Machine Translation.

Guest Speaker Talk
04 Oct 2016

On October 4th, Jake Lever, a PHD candidate in Bioinformatics from UBC will give a talk about his research about knowledge discovery during the lab meeting. He is going to talk about three of his major projects. The first one focuses on knowledge discovery by inferring relations between biomedical concepts using approaches from recommender systems; the second focuses on biomedical relation extraction and this year’s BioNLP shared task; and the third talks about using NLP to build knowledge bases for personalised medicine.

Recent Publications