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Abstract

Solving substitution ciphers involves mapping
sequences of cipher symbols to fluent text in a
target language. This has conventionally been
formulated as a search problem, to find the deci-
pherment key using a character-level language
model to constrain the search space. This work
instead frames decipherment as a sequence pre-
diction task, using a Transformer-based causal
language model to learn recurrences between
characters in a ciphertext. We introduce a novel
technique for transcribing arbitrary substitution
ciphers into a common recurrence encoding.
By leveraging this technique, we (i) create a
large synthetic dataset of homophonic ciphers
using random keys, and (ii) train a decipher-
ment model that predicts the plaintext sequence
given a recurrence-encoded ciphertext. Our
method achieves strong results on synthetic 1:1
and homophonic ciphers, and cracks several
real historic homophonic ciphers. Our anal-
ysis shows that the model learns recurrence
relations between cipher symbols and recovers
decipherment keys in its self-attention.1

1 Introduction

Text may be considered a special kind of recurrent
sequence, where letters repeat at intervals which
conform to a language’s character n-gram distribu-
tion. The hidden mapping between cipher text and
plain text can be viewed as a model that predicts
this recurrent sequence. Can we use self-attention
to recover the mapping from a sequence of recur-
rent symbols to crack the cipher?

In this work, we exploit this idea for decipher-
ment by building upon recent successes of Trans-
former models (Vaswani et al., 2017) in reasoning-
based regression tasks such as mathematical rea-
soning (Saxton et al., 2019; Li et al., 2021) and
learning the mathematical function for recurrent

1https://github.com/protonish/decipher_symbol_
recurrence

Figure 1: The homophonic substitution key for the Sime-
one de Crema written in Mantua in 1401 AD. The top
line maps each character in the alphabet to its reversed-
alphabet equivalent; each vowel is substituted by three
additional symbols.

sequences (D’Ascoli et al., 2022). We rethink deci-
pherment as a regression task that predicts a natural
language plaintext by learning a recurrence relation
between integer-coded ciphertext symbols.

There exist large collections of historical ciphers
(see de-crypt.org)2, in the form of encrypted let-
ters and more informal communications, of which
many remain undeciphered. Many of these texts
employ complex homophonic substitution ciphers,
which mask the frequencies of letters by using a
larger alphabet than the underlying language. Fig-
ure 1 shows the first known homophonic cipher
from 1401 AD 3. Automated computational deci-
pherment of such texts is challenging (Pettersson
and Megyesi, 2019; Megyesi et al., 2020). Prior
work has mainly focused on using clever heuristics
and/or search algorithms to explore the space of
cipher keys and score multiple candidate plaintexts
under character language models (LMs) (Knight
et al., 2006; Corlett and Penn, 2010; Hauer et al.,
2014; Berg-Kirkpatrick and Klein, 2013; Nuhn
et al., 2013, 2014; Kambhatla et al., 2018) In con-
trast Aldarrab and May (2021) train a sequence-to-
sequence model to solve simple (one-to-one) sub-
stitution ciphers. This approach, however, cannot
solve complex homophonic ciphers as it relies on
frequency information which such ciphers obscure.

In this paper, in a departure from frequency and
2https://de-crypt.org/decrypt-web/RecordsList
3https://en.wikipedia.org/wiki/Francesco_I_

Gonzaga
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Figure 2: Part of an arbitrary 424 characters long homophonic cipher with 71 symbols and its plaintext. Bottom
row juxtaposes symbol frequencies in 1:1 vs homophonic encipherments of the plaintext.

heuristic search-based techniques, we make the fol-
lowing contributions: 1 We create a sequence-
to-sequence dataset comprising 2 million unique
homophonic ciphers and their plaintext. 2 We
propose a novel recurrence encoding which en-
codes information about the position and repetition
of symbols in a cipher. This can be applied to both
1:1 and homophonic ciphers. 3 This encoding al-
lows us to treat decipherment as a sequence predic-
tion task conditioned on an integer sequence. We
introduce a novel approach to solving homophonic
ciphers by using a Transformer LM to translate
integer-encoded ciphertexts to plaintexts. We also
provide exhaustive analysis to show the strengths
of our model. 4 We demonstrate near-perfect
results on synthetic homophonic ciphers. Addi-
tionally, we show fully automated decipherment
of TNA_SP106/5 and BnF-f01, two real historical
ciphers.

Our analysis shows that reproducing the input
ciphertext before generating the plaintext helps our
model to learn the relations between cipher sym-
bols. This enables it to implicitly learn the deci-
pherment key with high accuracy, and to determine
which symbols are homophones of one another.
The decipherment is highly constrained by this im-
plicit key even in the face of disfluent plaintexts,
and as a result our model is able to produce deci-
pherments into Latin and late Middle/early modern
English, despite being trained on modern English.

2 Decipherment of Substitution Ciphers

A 1:1 or simple substitution cipher, the oldest
known technique for obscuring written information,
defines a 1-1 mapping between plaintext characters
and ciphertext symbols. This mapping can easily
be broken with frequency analysis (Hauer et al.,
2014; Kambhatla et al., 2018; Aldarrab and May,

Method Search Train

n-gram LM (2010) A* ✗

LM + Bay. Inf.(2011) sampling ✗

LM + HMM (2013) EM; 1M restarts ✓

n-gram LM (2013; 2014) beam ✗

lstm LM (2018) beam ✗

Generative LM (Ours) ✗ ✓

Table 1: Summary of different methods used for solving
homophonic ciphers. Prior approaches are predomi-
nantly search-based and use a frozen language model to
score partial candidate hypotheses.

2021) which leverages the fact that these ciphers
preserve the distribution of character frequencies
in the underlying language.

Homophonic ciphers are substitution ciphers
where one plaintext character may be encoded by
more than one ciphertext symbol. In this way, fre-
quent plaintext characters can be mapped to many
infrequent ciphertext symbols, resulting in a flat-
tened frequency distribution (Figure 2).

2.1 Background
Traditional approaches to natural language deci-
pherment of homophonic substitution ciphers–the
main focus of this work–are entirely search-based
(Table 1). Nuhn et al. (2013) perform a beam search
using an offline, frozen character language model
to score candidate decipherments, and Nuhn et al.
(2014) improve the rest-cost estimation for this
technique. Kambhatla et al. (2018) further improve
the rest-cost heuristic by using a frozen neural LM
to score hypotheses. Corlett and Penn (2010), on
the other hand, use A∗ search. Berg-Kirkpatrick
and Klein 2013 uses 1 million random restarts to
learn HMMs for decipherment.

The ability of such inference-only methods to
generalize can be limited, as it depends on the un-
derlying language model that is used to score the
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Figure 3: Top-left: Before recurrence encoding. Every ciphertext is unique with a different key, with distinct keys
and plaintexts, and varying lengths. There is no relation between identical symbols in different ciphers (e.g.
in cipher 1 and 5). These dissimilarities make it nearly impossible to train a model to generalize to new, unseen
homophonic ciphers. Top-right: After recurrence encoding. Arbitrary ciphertexts are converted to recurrent integer
sequences. The encoding is applied to each cipher independently: the same symbol may receive different encodings
in different ciphertexts depending on where it first occurs, and two ciphers may receive the same encoding despite
using different alphabets. Bottom: Recurrence-encoded symbols decipher to different values depending on context.

constructed hypotheses. Even an efficient search
can take a long time to find the whole cipher key
(Nuhn et al., 2013; Kambhatla et al., 2018).

3 Our Generative Decipherment Model

We frame decipherment as a novel sequence gen-
eration task–we train a generative language model
that learns the relations between recurring symbols
in a homophonic cipher and generates the corre-
sponding deciphered plaintext message.

3.1 Converting Arbitrary Ciphers into
Recurrent Integer Sequences

In a substitution cipher, any character may be sub-
stituted for any other, limiting what one can gen-
eralize between different ciphertexts (Figure 3).
However, unrelated ciphers may still exhibit similar
patterns of letter distribution and repetition and dis-
play latent characteristics of the plaintext language.
For example, the characters at the beginning of two
unrelated ciphers are likely drawn from the same
distribution of word-initial letters in the underlying
plaintext language. So we can generalize better by
treating ciphers as recurrent sequences.

We propose a novel recurrence encoding to high-
light where cipher symbols first occur and how
they are repeated within a ciphertext. This encod-
ing replaces the nth unique symbol in a ciphertext
with the number n wherever that symbol occurs
(Figure 3). This converts arbitrary ciphertexts into
integer sequences, and thus provides a coherent
connection between ciphers with distinct keys or
disjoint alphabets.

3.2 Modelling Symbol Recurrence Relations
In this section, ciphertext specifically refers to a
recurrence-encoded integer sequence.

Following Wang et al. (2021) and Zhang et al.
(2022) in MT, we use a causal language model
(LM) as a replacement for a Transformer-based
encoder-decoder model (Vaswani et al., 2017). For
a source sequence X and the target Y ,

[Xl, Y l] = FFN ◦ SelfAtn
(
[Xl−1, Y l−1],Mask

)
(1)

where l is the layer index, FFN is a feed-forward
network, and Mask denotes the attention mask.
Our CausalLM model is a unidirectional LM, with
causal masking over both the source and the target.
This optimizes the joint distribution of cipher (src)
and plaintext (tgt) sequences:

LCLM (X,Y ) = LSRC + LTGT (2)
= −logP (X)− logP (Y |X)

CausalLM is therefore forced to sequentially pre-
dict the ciphertext just as it predicts the plaintext.
This formulation encourages the model to learn a
coherent relationship between the ciphertext and
plaintext characters within each training sample.

Baseline Models. To understand the importance
of causal attention masking, we also consider the
following models which do not generate the cipher-
text:

Seq2Seq Following (Aldarrab and May, 2021),
this is a character level Transformer architecture
that is only optimized on the target-side (plaintext)
loss: LSeq2Seq(X,Y ) = LTGT = −logP (Y |X)
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Figure 4: Schematic depiction of our Transformer
LM model for an example ciphertext. X denotes the
recurrence encoded ciphertext and Y is the plaintext,
prepended by REC and PLAIN tags respectively.

Target-Only CausalLM is only optimized on
the target-side loss LTGT , and incurs no loss when
generating the source text.

PrefixLM combines SelfAtn and masked-
SelfAtn: the ciphertext is attended at all times,
while the plaintext uses a causal mask:

Mask(i, j) = 1, if i ≥ j or j ≤ |X|; else 0 (3)

where 1 ≤ i, j ≤ (|X| + |Y |). This setting
mimics an encoder-decoder by modelling the con-
ditional distribution of the plaintext target given
the ciphertext source with target-only objective
LPLM (X,Y ) = LTGT .

All models build character embeddings with a
convolutional neural network and highway net-
works over character inputs (Kim et al., 2016).

4 Experimental Setup

4.1 Data

Length Keys #Train #Valid #Test

30-45 460,467 25,582 25,581
300-400 45-60 503,695 25,582 25,581

30-85 542,611 25,582 25,581

30-45 460,467 25,582 25,581
300-700 45-60 542,611 25,582 25,581

30-85 1,046,306 25,582 25,581

Table 2: Summary of the synthetic homophonic ciphers
used in our experiments. All ciphers are unique.

We extract 1000 English books from Project

Algorithm 1 Allocate Homophonic Symbols
Plaintext sample y of length n
Plaintext chars, yfreq = Counter(y).most_common()
Approx. cipher symbols, #sym

procedure HOMOPHONIC( yfreq , n, #sym)
sym_count = 0 ▷ final num. of cipher symbols
sym_per_char = dict() ▷ num. symbols per plain char
for char, freq in yfreq do

char_weight = int( freq / n )
wsym = int(char_weight * #sym )

num_sym =

{
1, wsym == 0

wsym, otherwise

sym_count += num_sym
sym_per_char[char] = num_sym

return sym_count, sym_per_char

Gutenberg4 to create training, validation and test
sets. We also use ∼200k English sentences from
news-commentary v9 from WMT14 En-De. Com-
bining these, we generate homophonic ciphers with
lengths and keys summarized in Table 2.

Synthetic Homophonic Ciphers. To train a
model that can generalize to unseen ciphers, we
first generate synthetic homophonic ciphers using
Algorithm 1 to flatten the frequency distribution
of a text. This technique allocates multiple less-
frequent ciphertext symbols to common plaintext
letters to yield strong homophonic ciphers.

For simple substitution ciphers, we use the same
English data as above to create 1.2M synthetic sub-
stitution ciphers with lengths up to 256. Following
previous work on 1:1 ciphers (Nuhn et al., 2013;
Kambhatla et al., 2018; Aldarrab and May, 2021),
we evaluate on 50 test ciphers of lengths up to
128 (16,32,64) and beyond 128 (128,256) from the
Wikipedia page on History 5. All our experimental
settings include data with word boundaries denoted
by the space symbol (_). We train our multilin-
gual model on length 256 1:1 ciphers from the 13
language data in Aldarrab and May (2021)6 which
includes training, validation and test splits.

4.2 Model Details
Our main model uses a Transformer decoder-based
auto-regressive language model. Our model com-
prises a 12 layer decoder with 12 attention heads
and a feed-forward dim. of 1536, totalling 23M
trainable parameters. We use character filters of

4https://github.com/pgcorpus/gutenberg
5https://en.wikipedia.org/wiki/History
6https://github.com/NadaAldarrab/

s2s-decipherment

https://github.com/pgcorpus/gutenberg
https://en.wikipedia.org/wiki/History
https://github.com/NadaAldarrab/s2s-decipherment
https://github.com/NadaAldarrab/s2s-decipherment


[(1, 64), (2, 128), (3, 192), (4, 256)] with a charac-
ter dim of 4 and 2 highway layers. For the seq2seq
model, we implement a 6 layer encoder-decoder
Transformer with the same settings as above. All
models are implemented using the fairseq toolkit
(Ott et al., 2019).

All models train for about 30 iterations over the
data at ∼100 minutes per epoch on 4xA6000 GPUs.
Inference uses a beam size of 200 unless otherwise
stated. Inference speed is about 400 chars/second
on a single Titan RTX.

Evaluation Following prior work (Kambhatla
et al., 2018; Aldarrab and May, 2021), we evalu-
ate on Symbol Error Rate (SER), the proportion of
ciphertext symbols which are wrongly recovered.

5 Homophonic Substitution Ciphers

We experiment on solving our own synthetic homo-
phonic ciphers, and on automatically deciphering
two real world homophonic ciphers that have pre-
viously only been cracked manually.

5.1 Results on Synthetic Ciphers

Table 3 reports results on synthetic homophonic
data using recurrence encoding. On 400- and 700-
character long ciphers, our best model with causal
attention and up to 65 keys achieves near perfect
decipherment. As expected, we observe the best re-
sults on long ciphers, which provide more context.
Even on challenging ciphers with up to 85 keys
over 400 characters (4.5 chars/symbol), our model
attains an average error rate of 2.25%, averaging
only 1 wrong character each. As will be shown
in Section 8 (Table 7), our model also implicitly
recovers decipherment keys with > 98% accuracy.

#keys Model Max Len.
400 700

Seq-to-Seq 72.30 fail

30-45 PrefixLM 54.73 69.50
CausalLM (tgt) 29.99 37.20
CausalLM 0.40 0.21

PrefixLM 69.50 54.73
40-65 CausalLM (tgt) 29.99 37.20

CausalLM 0.83 0.80

PrefixLM 70.52 71.82
30-85 CausalLM (tgt) 42.05 42.69

CausalLM 2.25 2.19

Table 3: SER% on synthetic, homophonic, recurrence-
encoded ciphers. All plaintexts use 26 unique letters.

These results show the strength of recurrence en-
coding together with a causal LM objective.

Generating cipher + plaintext vs. plaintext only:
The best results by a significant margin are obtained
through language modeling with a causal attention
mask—the only model that is trained to generate
the ciphertext before the intended plaintext. All
other approaches fail to give adequate results in
any setting. A sequence-to-sequence model ob-
tains poor results on ciphers of 400 characters and
fails to converge on 700 char long ciphers.7 Prefix
attention is consistently worse than causal attention,
and its performance varies unpredictably across in-
put length and number of keys. Causal attention
with target-only loss is worse than causal attention,
suggesting that reproducing the source text may
play an important role in solving this task. We con-
sider this idea further in our analysis of the model’s
attention in Section 8.

5.2 Results on Zodiac 408 Cipher

We compare our method on the famous Zodiac
408 cipher that has 408 characters written with 54
different symbols (~7.5 characters per symbol). For
this particular cipher, all models including ours are
trained on the English Gigaword corpus for fair
comparison with other models in Table 4. From
Table 4, our generative LM is both better, and faster
by orders of magnitude.

Method Search SER (%) Speed

LM+EM (2013) 1M restarts 11.0 –
n−gram LM (2013) beam 100K 94.6 4000

beam 1M 2.7 35000
LSTM LM (2018) beam 100K 2.4 5600

beam 1M 1.9 50000

Ours (greedy) beam 1 1.9 1 sec
Ours (best) beam 200 1.9 2 sec

Table 4: Zodiac 408. Methods for simple (1:1) substi-
tution ciphers can not be used on Zodiac408. The last
column shows inference speed in seconds. Our method
is much faster because it auto-regressively generates
the decipherment whereas previous methods perform an
exhaustive search to find the mapping for each symbol.

5.3 Solving historical substitution ciphers

Most historical ciphers are centuries old and can
be challenging to solve—the encipherment scheme
may be peculiar to the author; the language may be

7NMT models are known to suffer from long sentences
(Neishi and Yoshinaga, 2019; Varis and Bojar, 2021)
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Figure 5: Predicted (middle) vs true (bottom) decipher-
ment of the first few lines of BnF-f01 cipher (top). Er-
rors in red and boxed.

archaic or unstandardised, and thus out-of-domain
for models trained on modern data; or there may
be human errors in the transcription.

Though our model is trained only on synthetic
ciphers with no further finetuning, we hypothesize
that it may nonetheless see success on real medieval
ciphers. This section demonstrates those successes.
1. TNA_SP106/5 Also called CharlesI_(0096),8

this is a strong homophonic cipher that was writ-
ten in 1624 in the United Kingdom, during the
reign of King Charles I of England. It is a very
difficult cipher which is 171 characters long, using
47 unique symbols to encipher 27 plaintext letters
(each cipher symbol appears 3.6 times on average).

Using our homophonic 40-65 key model with
beam size 1000, we attain a readable decipherment
with a symbol error rate (SER) 18%.

2. BnF_fr2988_f01 BnF-f019 (Fig. 5) is
a 2 page long enciphered letter from between
1524–1549 in Italy, believed to be addressed
to King Henry VIII. This homophonic cipher
uses 35 symbols, with archaic spellings in the
underlying plaintext that make it a challeng-
ing target due to the different character dis-
tribution from our training set. Examples
include pleis→(please), faythful→(faithful),

8de-crypt.org/decrypt-web/RecordsView/420
9de-crypt.org/decrypt-web/RecordsView/2323

obtein→(obtain) and gretast→(greatest). Our
best homophonic model trained with ciphers be-
tween [30-45] keys is able to crack it with SER
1.13%. The first few lines of model output and
corresponding plaintext are shown in Figure 5. Al-
though our model was never explicitly trained for
robustness, the recurrence encoding helps it to
overcome the unexpected plaintext distribution and
maintain a consistent key to recover the message.

6 Does our technique generalize to 1:1
substitution ciphers?

To exploit the well-known weakness of simple sub-
stituion ciphers, Aldarrab and May (2021) pro-
posed frequency ranking whereby cipher symbols
are replaced by their frequency ranks across all 1-1
substitution ciphers. We use recurrence encoding
and frequency ranking with our best performing
causal LM architecture10 and compare with several
baselines, including Aldarrab and May (2021).

cipher length → <128 >128

Beam + 6-gram (Nuhn et al., 2013) 22.00 0.00
Beam + LM ((Kambhatla et al., 2018)) 10.89 0.00
Beam + LM + Freq. Match (ibid.) 11.32 0.00
Seq2Seq + Freq. (Aldarrab and May) 7.68 0.00

Causal LM + Freq. 10.56 0.00
Causal LM + Rec. 11.30 0.02

Table 5: On simple substitution ciphers of length >128,
our performance equals or exceeds all baselines. Freq.
and Rec. denote frequency and recurrence encodings.

Our model performs well on simple substitutions
(Table 6) using frequency ranking. While the scores
on very short ciphers (16, 32, 64) only match the
performance of beam-search based methods, on
ciphers longer than 128, our model achieves close
to 0 SER. Recurrence encoding is less effective in
shorter sequences (< 128) and requires more con-
text to be effective compared to frequency ranks
which more directly indicate the plaintext character
distribution. However, recurrence encoding is not
required in this context as the character distribu-
tions are not flattened.

7 Unknown Plaintext Language

As Megyesi et al. (2020) reports, several historical
ciphers in libraries and archives have no informa-
tion on the plaintext language. We evaluate on the

10Recall that recurrence encoding doesn’t work well with
an encoder-decoder model (Table 3).

de-crypt.org/decrypt-web/RecordsView/420
de-crypt.org/decrypt-web/RecordsView/2323


Latin Borg Cipher11, a ca. 17th century manuscript,
to learn if our model can decipher without explicit
knowledge of the underlying language.

7.1 Multilingual model with no language ID
Following Aldarrab and May (2021), we train our
decipherment model on ciphers from 13 different
languages without language ID and apply it to the
Borg cipher (page 0011v). Both models are trained
on frequency based encoding. Compared to 5.47%
SER in the baseline, our model achieves a better
SER of 4.1%.

SER (%)

Multilingual Seq2Seq (2021) 5.47
Multilingual Causal LM (ours) 4.10

Table 6: Using our multilingual model trained on 13
languages to solve the 1:1 Borg cipher.

7.2 Zero-shot decipherment in an unseen
language

Though the Borg MS uses a simple substitution
cipher, the plaintext language (Latin) is out-of-
domain for our main model which was trained on
English only (Sec. 5). Zero-shot inference on the
first 400 characters of page 0011v results using
our recurrence-encoding based model in an SER of
45.14%. A mere 3 manual inteventions–fixing two
words (aperitione, emorrhoidarum) and correcting
one (cumo to cum)–however, are sufficient to solve
the entire cipher with SER 3.89%. See Appendix
B for details on human-in-the-loop decipherment.

This shows that our model learns to consistently
produce the same output for a given symbol regard-
less of the plaintext distribution, which is crucial
for cracking ciphers and separates this from a con-
ventional text generation model.

8 Analysis

8.1 On the significance of learning the
distribution of ciphertext characters

Section 5 demonstrated that CausalLM signifi-
cantly outperforms other models on synthetic ho-
mophonic data. This is the only approach which
must model the distribution of ciphertext charac-
ters: Seq2Seq and PrefixLM allow the model to
freely attend to the full ciphertext, while target-only
loss gives no penalty for mistakes in the cipher-
text. These settings remove the incentive to learn

11https://cl.lingfil.uu.se/~bea/borg/

Figure 6: Left: self-attention map from our causal LM.
Right: self-attention map over the same sentence from
our causal LM with target-only loss.

the distribution of ciphertext characters, whereas
CausalLM must sequentially predict the ciphertext
just as it predicts the plaintext.

Figure 6 illustrates the impact of target-only loss
by showing the final layer of self-attention scores
for an example input. CausalLM exhibits a strong
diagonal pattern in the lower-left of the attention
matrix, showing that it attends monotonically to ci-
pher symbols when producing corresponding plain-
text symbols. With target-only loss, attention is
roughly uniform over all ciphertext symbols when
reproducing the input, as there is no penalty for
mistakes in this section and consequently no need
to attend to relevant context cues. This model does
not strongly attend to the ciphertext at any point
when generating the plaintext.

Key Recovery The model’s self-attention implic-
itly recovers decipherment keys. We construct
a n_plaintext_symbols by n_cipher_symbols
matrix where cell (p, c) sums the mean attention
over all layers paid to c when producing p. More
common symbols receive more attention, so we
divide each column by the frequency of the corre-
sponding symbol. Figure 7 depicts such a matrix,
normalized so that the largest value in each row is
1: the largest value in most columns clearly corre-
sponds to the decipherment key. Table 7 reports key
error rate (KER) using this technique, as well as
variants without adjusting for frequency or normal-

Figure 7: Left: Avg. attention paid to ciphertext sym-
bols when generating plaintext symbols in one test case.
Right: True key, where a dark cell indicates which char-
acter the symbol in each column deciphers to.

https://cl.lingfil.uu.se/~bea/borg/
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Table 7: (l) Key error rate (%) averaged over 2000
homophonic test cases. Values multiplied by 100 for
readability. (r) Distribution of mapping errors.

izing by column rather than by row; the distribution
of errors is shown beside the table. With our best
technique, the median and mode number of erro-
neous mappings is 0, i.e. we perfectly recover the
key from the self-attention in most cases.

Our model’s ability to accurately produce Latin
highlights that it learns to obey the inferred key
even in the face of conflicting signals from an out-
of-domain plaintext.

8.2 Recovering character recurrence relations

Homophone Recovery Attention from cipher-
text symbols to other ciphertext symbols reveals
which characters are homophonic. Figure 8
(left) shows, for a sample input, the average self-
attention from a ciphertext symbol towards other
ciphertext symbols; Figure 8 (right) shows which
of these symbols are homophones. The largest
self-attention scores roughly correlate with cells
representing homophonic symbol pairs. Compar-
ing to Figure 7 (left) we see that the homophone
pairs which are not recovered involve those sym-
bols for which the model lacks a confident plaintext
mapping.

This behaviour arises as the model reproduces
the input ciphertext. This can be observed by aver-
aging self-attention over chunks of successive time-

Figure 8: Left: Avg. attention from ciphertext symbols
to other ciphertext symbols when reproducing one test
case. Right: Dark cells indicate homophonous symbols.
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Figure 9: Pearson’s r between self-attention scores at
different time-steps and reference matrices encoding ho-
mophones (cf. Figure 8). Averaged over 50 ciphertexts.

steps (rather than the entire input) and measuring
Pearson’s r between the resulting matrices and a ref-
erence matrix as in Figure 8 (right). As seen in Fig-
ure 9, the correlation between homophony and self-
attention grows steadily as the model reproduces
the input, reaching a plateau after ∼200 tokens.
(See also Figure 13 in Appendix C.) This demon-
strates the importance of CausalLM, as it shows
that the model makes crucial inferences about its
input as it reproduces that input.

We emphasize that our model learns homophony
relations and recovers decipherment keys implic-
itly, in just a single pass over the input ciphertext.
Prior search-based techniques required a search
over many candidate plaintexts in order to recover
these same relations explicitly.

9 Other Related Work

Computational decipherment based techniques
have seen a wide range of applications ranging
such as identifying unknown languages and scripts
(Hauer and Kondrak, 2016), writing systems (Born
et al., 2019, 2021, 2022) and lost languages (Snyder
et al., 2010; Luo et al., 2019), offensive langauge
detection (Wu et al., 2018; Qian et al., 2019), and,
more recently, towards improving neural machine
translation (Kambhatla et al., 2022). While deci-
pherment has strong connections to cryptography
research, we limit the scope of this work to nat-
ural language based decipherment. Knight et al.
(2006) proposed an unsupervised noisy channel
based technique for decipherment. Hauer et al.
2014 solved short ciphers with Monte-Carlo tree
search. Greydanus (2017) train a seq-to-seq LSTM
to solve polyalphabetic substitution ciphers includ-
ing Enigma, but only explore supervised known-
plaintext attacks. CipherGAN (Gomez et al., 2018)
exploits learned letter embedding distributions, but
requires a large volume of ciphertext and only han-
dles 1:1 substitution and Vigenère ciphers. Luo
et al. (2021) and Aldarrab and May (2022) pro-



pose techniques to decipher undersegmented ci-
phers. Aldarrab and May (2021) train a sequence-
to-sequence neural translation model to decipher
from character frequencies. In contrast, we intro-
duce a novel encoding which is suitable for ho-
mophonic inputs, and demonstrate that a causal
LM is more effective than a seq-to-seq model in a
homophonic setting.

Cross-attention from encoder-decoder architec-
tures has been shown to have limited explanatory
power in translation settings (Moradi et al., 2019,
2021). In spite of this, Born et al. 2022 show that
encoder self-attention implicitly captures informa-
tion which replicates expert intuitions about doc-
ument structure in an undeciphered script. In a
similar vein, our key recovery experiments offer
evidence of yet another way self-attention may be
fruitfully exploited in the decoder in a decipher-
ment setting.

10 Conclusion and Future Work

We introduce a novel recurrence encoding to rep-
resent distributional information which is invari-
ant across plaintexts and ciphertexts, even under
homophonic ciphers. This allows us to train a
Transformer LM for decipherment using synthetic
ciphertext-plaintext pairs. Our model achieves
strong results on unseen homophonic substitution
ciphers, and achieves the first fully-automatic de-
cipherment of several historical ciphers. We show
that language models vastly outperform sequence-
to-sequence models on this task, and that causal
attention masking (which forces our model to repro-
duce the ciphertext before deciphering it) is crucial
to solve homophonic inputs. Our analysis shows
that our model implicitly learns homophony rela-
tions and the decipherment key while reproducing
the input. In a zero-shot setting, our model accu-
rately deciphers into Latin despite being trained on
English; This work marks a successful departure
from search-based solutions to homophonic substi-
tution ciphers, and introduces language models as
a viable tool for future decipherment work.
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Limitations

A key limitation of our model is the combined se-
quence length of the ciphertext and the plaintext.
As the standard self-attention mechanism of the
Transformer uses O(n2) time and space with re-
spect to sequence length, modelling longer ciphers
(eg. 1500 chars) is extremely compute inefficient.
This also restricts our model’s ability to handle ci-
phers such as the Beale Pt. 2 cipher. A possible
avenue for an extension of this work is to address
this issue by leveraging more sophisticated self at-
tention mechanisms like the linformer (Wang et al.,
2020).

Ethics Statement

This work is concerned with decoding encrypted
correspondences, and therefore the techniques in
the paper are designed to reveal information that
has been purposefully obscured and might violate
the privacy of the authors. However, an encryp-
tion system such as the homophonic substituion
cipher is primarily seen in centuries old historical
ciphers, and is both relatively weak and obselete.
The methods might have little impact beyond any
applications intended towards decipherment of an-
cient ciphers or machine translation. Further, the
more standard encryption techniques such as the
AES/RSA are very sophisticated and cannot be
attacked with the model discussed in the paper.

We note that our proposal of this method is not
as a replacement to expert code-breakers, but as
a new tool at their disposal. Our model cannot
“cheat” except by disobeying the key, and we’ve
shown that it does consistently follow the key (Sec-
tion 8.2). Thus our model output is no more or
less trustworthy than the equivalent produced by a
human. Since there is no guarantee that the model
will always produce the right decipherment, it is
imperative that domain experts assess the text pro-
duced by this model in the same way they would
assess proposals from an amateur decipherer with
little/no domain knowledge.
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A Hyperparameters and Settings

Preprocessing Following the previous work
(Kambhatla et al., 2018; Aldarrab and May, 2021),
we preprocessed the Project Gutenberg data by
stripping the text of all non text elements, then
lower-casing all characters, and removing all non-
alphabetic and non-space characters. Our final
plaintexts consists of the 26 letters of English al-
pahbet and the _ symbol to denote space only.

Multilingual Data. The 13 language multilin-
gual data12 released by Aldarrab and May (2021)
consists of 2.2M ciphers in Catalan, Danish, Dutch,
Finnish, French, German, Hungarian, Italian, Latin,
Norwegian, Portuguese, Spanish, and Swedish lan-
guages.

Layers 12
Attn Heads 12
FF Dim. 1536
Char Embed 4
Highway Layers 2
Dropout 0.1
Attn. Dropout 0.1

Batch Size 32000
Peak lr 0.0005
Early Stopping No
Max Epoch 20

Table 8: The hyperparameters for our model and train-
ing.
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Figure 10: A high level depiction of the causal (left)
and the prefix (right) attention masks. X denotes the
ciphertext and Y is the plaintext, both prepended by POS
and PLAIN tags respectively.

B Towards Decipherment with Human
Intervention

In a realistic decipherment setting, the nature of the
cipher under attack will not be known. It is possi-
ble that some symbols will be polyphonic, that the
plaintext language will be out-of-domain, or that
the text will be short or corrupted (intentionally,
to prevent decipherment, or as a result of dam-
age in the case of historical documents). In such
cases, the outputs from an automated decipherment
may require manual emendation; real computer-
assisted decipherments have previously relied on
post-editing by domain experts, as in the decipher-
ment of the Copiale cipher Knight et al. 2011. We
demonstrate two examples of how our model can
be used for human-in-the-loop decipherment in this
more realistic setting.

Zodiac 408 A famous cipher from the Zodiac
killer of the 1970s, this text contains 408 characters
written with 54 different symbols (~7.5 characters
per symbol). There are six polyphonic13 symbols,
making the text out-of-domain for our model which
was only trained on homophonic ciphers. Table 9
shows an example of assisted decipherment based
on corrected words. When a correction is identified,
it can be appended to the model input, for example:

orig. input: REC <cipher> PLAIN

user prompt: REC <cipher> PLAIN i _ l i k e

Since our model is a left-to-right language model
on both cipher and plaintext, we can interrupt it
at any point during plaintext generation to intro-
duce a correction, which is then used as a new
constraint on decoding the plaintext. Correcting
only 5 polyphonous characters gives SER 0.4%,
establishing a new state of the art on this cipher.

Borg Cipher The Borg Cipher14 is a ca. 17th
century manuscript written in enciphered Latin.
Though the text uses a simple substitution cipher,
the plaintext language is out-of-domain for our
model which was trained on English.
Since our model was never trained on Latin, zero-
shot inference on the first 400 characters results
in an SER of 45.14%. But fixing the words
aperitione _ emorrhoidarum and correcting

12https://github.com/NadaAldarrab/
s2s-decipherment

13Different from a homophonic symbol, a polyphonic cipher
symbol encodes more than one plaintext character.

14https://cl.lingfil.uu.se/~bea/borg/

https://github.com/NadaAldarrab/s2s-decipherment
https://github.com/NadaAldarrab/s2s-decipherment
https://cl.lingfil.uu.se/~bea/borg/
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ᐹ ᛗ _ ᑏ ᚠ ⠟ ᚹ ᓀ ᛋ ᕃ ᓄ ⠂ _ ⠗ _ ᒷ ⠛ ⠙ _ ᔑ ⠄ ⋮ ℸ ᓱ ⠛ ⠗ ᛇ ⠽ _ ᑫ ⠝ ⠸ _ ᛈ 𒐐 ᒧ ᔾ ⎓ _ ̅ ⍊ ⠦ _ 𒌋 ᑮ ⠃ ᑕ ᑐ ᖏ ⠕ _ ᐯ ! ᛉ ᒍ _ 𒐖 _ ⠄ ⠊ ̅
∷ _ ᒲ ⠝ ǁ ⠥ _ ᛁ ᛈ ᐹ ᕃ _ ⠆ ᚹ ̅ ᔫ _ ʖ ᙶ ᛇ ⠤ _ ᑲ _ ᑐ ⠞ ⠕ ⠆ ̇ _ ᑮ 𒐙 ⠇ ᑐ ⠄ ⠙ _ ᚠ ⟍ ⠕

l e g e n d s _ f r o m _ r i v e r _ a n d _ m o u n t a i n _ i l l u s t r a t i o n _ f r o m _ t h e _ c a v e _ o f _ j a l o m i t z a _ p _ b u t
_ t h e r e u p o n _ t h e _ h o r s e _ w a s _ c h a n g e d _ i n t o _ a _ h a w k _ t h a t _ s h o t _ d o w n _ f r o m _ a _ g i d d y _
h e i g h t _ a n d

l       =>        ̅ ᖄ ᛏ
e       =>       ⠉ 𒐖 𒐐 ⠊ ᓓ ⨅ ᑑ ᐴ
g       =>       𒐚
n       =>       ᙵ ᓄ ᙶ ᑲ 𒐝 ᙳ
d       =>       ᚷ ᒨ
s       =>       ᐯ ᛞ ᒡ ᔪ
f       =>       ᛃ ᛚ
r       =>       / ᚠ ᒍ ᛋ ᐱ
o       =>       ⠎ ᚹ ⠸ ᓅ ᑕ
m       =>       ᐳ ⠁
i       =>       ⠇ ᑳ ᓲ ᚱ
v       =>       ᑉ

plaintext

ciphertext

a       =>       ᛖ 𒐏 ⠼ ᓱ ᔫ ⠗ ᑏ ᒲ 
u       =>       ᐊ
t       =>       ᚲ ᐲ ᓵ ᖒ 𒐜 ⠤ ⠑
h       =>       ⠍ ᑮ ᓭ ⠅
c       =>       𒐛
j       =>       ᑌ
z       =>       ᒎ
p       =>       ⠃
b       =>       ⠆
w       =>        ̇
k       =>       ∷
y       =>       ⠝

cipher-key 
(71 symbols)

Figure 11: Example homophonic cipher and its substitution key showing the different symbols mapped to the
plaintext characters.

Deciphered Text Next Correction SER

i _ l i k e _ k a d l a n g _ p e o p d e _ b e c a u s e _ i t _ i n _ s o _ m u c h _ f u n _ a t _ a x _

m o r e _ f u n _ t h a n _ k i l d i n g _ w a l z

people, is, killing (only
one letter change in each:
d → l, n → s, d → l)

14.40

i _ l i k e _ k a l l a n g _ p e o p l e _ b e c a u s e _ i t _ i s _ s o _ m u c h _ f u n _ a t _ a x _ m o

r e _ f u n _ t h a n _ k i l l i n g _ w a l z

killing (a → i) 12.16

i _ l i k e _ k i l l i n g _ p e o p l e _ b e c a u s e _ i t _ i s _ s o _ m u c h _ f u n _ a t _ a x _ m o r e
_ f u n _ t h a n _ k i l l i n g _ w i l d

(no correction needed;
partial key has been de-
rived by the model)

3.04

Table 9: First 2 steps of the iterative human assisted decipherment of Zodiac-408 cipher. Identified corrections can
be passed as the model input following the cipher. Fixing errors in the beginning (‘killing‘) can lead to improved
plaintext selections for symbols that appear later on (‘wild‘). After 3 more steps the process achieves SER of 0.4%.

_cumo_ to _cum_ mostly solves the cipher in 3
steps resulting in SER 3.89%.

C Additional Analysis

Measures of Difficulty Figure 12 plots, for a
sample of our test set, SER versus three measures
of cipher difficulty: the index of coincidence (Fried-
man 1922, which measures the uniformity of the
frequency distribution; values closer to 1 are more
uniform and thus more challenging), the maximum
number of homophones any ciphertext symbol has
(where more homophones make a more challeng-
ing cipher), and the length of the cipher (where
shorter ciphers are more ambiguous and provide
less context). There is no significant correlation
between SER and any of these three measures.

Attention Heads Figure 14 shows that each at-
tention head demonstrates a consistent behaviour
across multiple different inputs. (Full-size figure
available in supplemental material.) Each column
of this figure comes from a distinct ciphertext, and
each row represents a Transformer layer, with the
output layer on the bottom. The cells in this grid are

divided into 12 sub-figures, each showing the self-
attention map from one head in the corresponding
layer on the corresponding input.
There are more heads which attend to the ciphertext
in lower layers than in higher ones, suggesting that
the model learns necessary features of the input
early on. We note the presence of several heads
which attend near the beginning of the ciphertext,
but not to the very first tokens. This may reflect the
fact that the first few tokens are always sequentially
encoded as 1 2 3 ..., and that the model is
focusing on the part of the text where these symbols
first repeat rather than where they first occur.
Several of the attention maps exhibit clear vertical
lines, meaning the head is attending to the same
token(s) (often in the plaintext) at all subsequent
time-steps. We speculate that these tokens may con-
vey some crucial distributional information which
helps to establish the key.

D Real Ciphers Used in This Work
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Figure 12: SER vs. index of coincidence, number of homophones of the most homophonic ciphertext symbol, and
cipher length. SER is not significantly correlated with any of these metrics.
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Figure 13: Mean self-attention from each ciphertext symbol to every other ciphertext symbol, averaged across
different time-steps. This figure uses the same input as Figure 8. Note how the left subfigure, representing the
earliest time-steps, does not meaningfully resemble the reference matrix from Figure 8, implying that the model has
not learned which tokens are homophones at this early stage.



Figure 14: Attention maps for each head in each layer
on three sample inputs. (Full-size figure available in
supplemental material.) Each column represents a dis-
tinct ciphertext, and each row a Transformer layer, with
the output layer on the bottom. Each cell is divided into
12 sub-figures, showing the self-attention maps from
each of the 12 heads in the corresponding layer on the
corresponding input.

Figure 15: The original full version of the Zodiac-408
cipher published by the San Francisco Examiner on
August 3rd 1969.



Figure 16: Page 1 of the BnF-f01 cipher from 1500s.



Figure 17: Page 2 of the BnF-f01 cipher from 1500s.


