
Tutorial:

TAG Semantics

Maribel Romero

University of Konstanz
maribel.romero@uni-konstanz.de

TAG+9
June 6-8, 2008

1

Plan

1. Summary of LTAG syntax

relevant for LTAG semantics

2. Semantic Composition in LTAG

3. Data on scope

4. Analysis of the scope data

5. Conclusions

2

Syntactic Architecture

• Two syntactic operations:

a. Substitution: replacing a leaf with a new tree

b. Adjunction: replacing an internal node with a new tree

• The result / output of carrying out the substitutions and
adjunctions is the derived tree.

• The history of how the elementary trees were put together is
recorded in the derivation tree.

3

(1) John sometimes laughs

NP

John

S

NP↓ VP
VP

ADV VP∗ V

sometimes laughs

derived tree:

S

NP VP

John ADV VP

sometimes V

laughs

derivation tree:

laugh

np vp

john sometimes

4

Feature-structure based TAG (FTAG):
Feature unification in syntax

• Each node has a top and a bottom feature structure (except
substitution nodes that have only a top). Nodes in the same
elementary tree can share features (extended domain of locality).

• Unification during derivation:
• Substitution: the top of the root of the new initial tree unifies

with the top of the substitution node
• Adjunction: the top of the root of the new auxiliary tree

unifies with the top of the adjunction site and the bottom of
the foot of the new tree unifies with the bottom of the
adjunction site.

• In the final derived tree, top and bottom unify for all nodes.

5

NP[
tj

bj

]

John

S

NP↓[tnp] VP[
tvp

bvp

]

VP[
tr

br

]

ADV VP[
tf

bf

]∗ V

sometimes laughs

derived tree:

S

NP[
tnp ∪ tj

bj

] VP[
tvp ∪ tr

br

]

John ADV VP[
tf

bvp ∪ bf

]

sometimes V

laughs

6

Plan

1. Summary of LTAG syntax

relevant for LTAG semantics

2. Semantic Composition in LTAG

3. Data on scope

4. Analysis of the scope data

5. Conclusions

7

Semantic composition (1)

• The derivation tree records the history of how the
elementary trees –the syntactic-semantic units– are put together.
⇒ Compute semantics (partly/exclusively) on derivation tree

• Two main avenues:
• Derivation tree as sole syntactic input to semantics (Joshi

and Vijay-Shanker 1999; Kallmeyer and Joshi 2003;
Kallmeyer and Romero 2008).

• Synchronous TAG: the derivation tree serves as partial (or
underspecified) input to build both the derived syntactic tree
and the “derived semantic tree”, isomorphically. The ordering
specifications made during the construction of the derived
syntactic tree affect the derived semantic tree. (Shieber 1994;
Shieber and Schabes 1990; Nesson and Schieber 2006)

8

Semantic composition (2)

• Here we will concentrate on the approach that takes the
derivation tree as sole syntactic input.

• Each elementary tree has a (set of) formula(s) as its semantic
representation. When elementaries trees compose, their formulas
are interpreted conjunctively.

• Furthermore, when trees compose, semantic information has to
be passed from one to the other. This will be done by:
• associating each elementary tree to an array of variables or to

a semantic feature structure description (cf. λ-abstraction),
and

• performing unifications –i.e., identifications– between the
variables or between the semantic feature structutes (cf.
λ-conversion).
⇒ Sem composition = conjunction + sem unification.

9

Semantic composition (3.1): A la Joshi and Vijay-Shanker 1999

(1) John sometimes laughs

about: s1

laughs(s1, x1)

x1

np vp

about: x

John(x)

about: s2

sometimes(s2, s3)

x2 s3

10

Semantic composition (3.2): A la Joshi and Vijay-Shanker 1999

(1) John sometimes laughs

about: s1

laughs(s1, x1)

x1

np vp

about: x

John(x)

about: s2

sometimes(s2, s3)

x2 s3

11

Semantic composition (3.3): A la Joshi and Vijay-Shanker 1999

(1) John sometimes laughs

about: s2

sometimes(s2, s3)

laughs(s3, x1)

John(x1)

12

Semantic composition (4.1): A la Kallmeyer and Joshi 2003

(1) John sometimes laughs

l0 : laughs(x1)

l0 ≤ h0

arg: 〈x1, 00〉

np vp

john(x)

arg: -

l2 : sometimes(h1)

s3 ≤ h1

arg: s3

13

Semantic composition (4.2): A la Kallmeyer and Joshi 2003

(1) John sometimes laughs

l0 : laughs(x)

john(x)

l2 : sometimes(h1)

l0 ≤ h1

l0 ≤ h0

14

Semantic composition (5.1): The missing link problem

• Case A:
(2a) John, Paul claims Mary seems to love
(2b) John said Mary apparently laughs
Derivation tree for (2b): laughs

said apparently
Desired semantics (simplified): said(j, apparently(laughs(m)))
Impossible reading: apparently(said(j, laughs(m)))

Question: Are the following counterexamples to Case A?
(3) Sandy rarely visited a friend because of El Niño.
(4) Usually, Pat allegedly drives a cadillac.

15

Semantic composition (5.2): The missing link problem

• Case B:

(3) Who does Paul think John said Bill liked?

Derivation tree: liked

who said

think

Desired semantics (simplified):
who(x, think(p, said(j, like(b, x))))

16

Semantic composition (6.1): A la Kallmeyer & Romero 2008
building on Gardent & Kallm.2003

(1) John sometimes laughs

l1 : laugh′(1)





s

[
b

[
p 2

]]

np

[
t

[
i 1

]]

vp




t

[
p 2

]

b
[
p l1

]









np vp

john′(x) l2 : sometimes′(3), 3 ≥ 4

[
np

[
t

[
i x

]]] 



vpr

[
b

[
p l2

]]

vpf

[
t

[
p 4

]]





17

Semantic composition (6.2)

• Semantic feature structure unification proceeds parallel to
syntactic feature structure unification.

• For each edge in the derivation tree from γ1 to γ2 with position
p:
• Substitution: the top of p in γ1 and the top of the root in γ2

are identified
• Adjunction: the top of p in γ1 and the top of the root in γ2

are identified, and the bottom of p in γ1 and the bottom of
the foot node of γ2 are identified.

• Furthermore, for all γ and all p in γ such that there is no edge
with position p from γ to some other tree: the top and bottom
of γ.p are identified.

18

Semantic composition (6.3)

l1 : laugh′(1)





s

[
t

b
[
p 2

]
]

np

[
t

[
i 1

]]

vp




t

[
p 2

]

b
[
p l1

]









np vp

john′(x) l2 : sometimes′(3), 3 ≥ 4



np

[
t

[
i x

]

b

]







vpr




t

[]

b
[
p l2

]





vpf




t

[
p 4

]

b

[]









19

Semantic composition (6.4)

Identifications: 1 = x (substitution), 2 = l2, 4 = l1 (adjunction
and top-bottom unification)

After unification the union of the semantic representations is built
and the assignments obtained from the unifications is applied to it.

Result:
l1 : laugh′(x), john′(x), l2 : sometimes′(3),

3 ≥ l1

Underspecified representation.

20

Semantic composition (6.5)

Disambiguation: Function δ from the set of propositional
metavariables to the set of propositional labels such that after
applying it, the resulting subordination is a partial order (Bos
1996, among others).

l1 : laugh′(x), john′(x), l2 : sometimes′(3),

3 ≥ l1

Only one disambiguation: 3 → l1. Leads to

john′(x), l2 : sometimes′(l1 : laugh′(x))

The resulting set is interpreted conjunctively.

This yields john′(x) ∧ sometimes′(laugh′(x))

21

Plan

1. Summary of LTAG syntax

relevant for LTAG semantics

2. Semantic Composition in LTAG

3. Data on scope

4. Analysis of the scope data

5. Conclusions

22

Data on quantifier scope (1)

• Quantificational NPs (non-nested): can in principle scope
freely; their scope is not directly linked to their surface
position.

• Quantificational elements attached to the verbal spine (adverbs,
raising verbs, attitudes verbs, control verbs): fix surface scope;
scope over everything that is lower on the verbal spine.

(2) Exactly one student admires every professor: ∃ > ∀, ∀ > ∃

(3) John seems to sometimes laugh:
seem > sometimes, sometimes '> seem

(4) John said Mary apparently laughs:
say > apparently, apparently '> say

(5) John seems to have visited everybody: seem > ∀, ∀ > seem

23

Data on quantifier scope (2)

For quantificational NPs, two things must be guaranteed:

• the proposition to which a quantifier attaches must be in its
nuclear scope

• a quantifier cannot scope higher than the next finite clause

(6) A student said you met every professor: a > every, every '> a

(7) A student wants to meet every professor: a > every, every > a

Idea: scope window delimited by some maximal scope maxs and
some minimal scope mins for a quantifier.

24

Data on quantifier scope (3)

Furthermore, when an NP2 is nested inside an NP1, the embedded
NP2 is allowed to scope above NP1, but only immediately above
NP1 (Larson 1987).

(8) Two policemen spy on someone from every city

(9)
a. 2 > ∃ > ∀ b. ∃ > ∀,2

c. 2 > ∀ > ∃ d. ∀ > ∃ > 2 e. * ∀ > 2 > ∃

Question: Why do we have the partially ordered reading (b) as
opposed to two separate, fully ordered readings (b’) ∃ > ∀ > 2 and
(b”) ∃ > 2 > ∀?

25

Empirical generalizations

1. For elements on VP-spine, scope is fully determined by surface
syntax: they take scope exactly where they appear.

2. For NPs, scope is underspecified within a scope window. The
lower limit is the predicate the NP combines with. The upper
limit depends on the syntactic configuration up the tree:

2.1 When the predicate the NP combines is finite, that is, when
the first operator up the tree is an attitude verb like say and
think (that), the upper limit remains inside the finite clause.

2.2 When the predicate the NP combines is non-finite, ie. when
the first operator up the tree is a control/ECM verb like
try/want, the upper limit goes beyond the non-finite clause.

2.3 When the NP is nested inside another NP, the upper limit
goes immediately above the embedding NP.

26

Plan

1. Summary of LTAG syntax

relevant for LTAG semantics

2. Semantic Composition in LTAG

3. Data on scope

4. Analysis of the scope data

5. Conclusions

27

Case 1: fix scope for VP-spine attachments

l1 : laugh′(j),

1 ≥ 2





s

[
b

[
maxs 1

p 2

]]

vp




t

[
p 2

]

b

[
p l1

]









s vp

l2 : say′(p, 3),

4 ≥ l2

l3 : apparently′(6),

6 ≥ 7





r

[
b

[
maxs 4

]]

f

[
t

[
maxs 3

]]









r

[
b

[
p l3

]]

f

[
t

[
p 7

]]





leads to scope order 4 ≥ l2 > 1 ≥ l3 > 6 ≥ l1, i.e. say > apparently.

28

Case 2: underspecified scope for NPs

Scope window: features maxs and mins.

NP

everybody

l2 : every′(x, 4 , 5),

l3 : person′(x),

4 ≥ l3,

6 ≥ l2, 5 ≥ 7



np



t




i x

maxs 6

mins 7













29

Case 2 (Cont.)

(10) Everyone laughs

l1 : laugh′(1),

2 ≥ 3





s

[
b

[
maxs 2

p 3

]]

vp




t

[
p 3

]

b

[
p l1

]





np



t




i 1

maxs 2

mins l1











np

l2 : every′(x, 4 , 5),

l3 : person′(x),

4 ≥ l3,

6 ≥ l2, 5 ≥ 7



np



t




i x

maxs 6

mins 7













30

Case 2 (Cont.)

Result:

l1 : laugh′(x),

l2 : every′(x, 4 , 5), l3 : person′(x)

2 ≥ l1, 4 ≥ l3,

2 ≥ l2, 5 ≥ l1

Disambiguation: 2 → l2, 4 → l3, 5 → l1
This yields: every′(x, person′(x), laugh′(x))

(11) Exactly one student admires every professor

Result:
..., 2 ≥ l2(every), 5 ≥ l1

2 ≥ l4(exactly − one), 8 ≥ l1

Ambiguous between ∃ > ∀, ∀ > ∃.

31

Case 2.1: NP in a finite clause

(12) Mary thinks John laughs

S

NP VP

thinks S∗

S

NP VP

laughs

Argument of attitude

verb embeds maxs

of embedded verb

l1 : laugh′(j),

1 ≥ 2





s

[
b

[
maxs 1

p 2

]]

vp




t

[
p 2

]

b
[
p l1

]









s

l2 : think′(m, 3),

4 ≥ 5 , 3 ≥ 6





sr

[
b

[
maxs 4

p 5

]]

vp




t

[
p 5

]

b

[
p l2

]





sf

[
b

[
maxs 6

]]





32

Case 2.1: NP in a finite clause (Cont.)

(13) Mary thinks John likes everybody

l1 : like′(j, x),

1 ≥ l1




s

[
b
[
maxs 1

]]

...





s np2

l2 : think′(m, 2),

4 ≥ l2, 2 ≥ 3

l3 : every′(x, 5 , 6), l4 : person′(x),

5 ≥ l4, 7 ≥ l3, 6 ≥ 8





sr

[
b

[
maxs 4

]]

sf

[
t

[
maxs 3

]]





[
np

[
t

[
maxs 7

mins 8

]]]

We have: l2 : think′(m, 2), 2 ≥ 3 = 1 = 7 ≥ l3, l3 : every′(x, 5)

Only one scope order: think′(m, every′(x, person′(x), like′(j, x)))

33

Case 2.2: NP in a non-finite clause

(14) John wants to laugh

S

NP VP

wants S∗

S

NP VP

(to) laugh

Argument of control/ECM

verb lets maxs

of embedded verb pass

l1 : laugh′(j),

1 ≥ 2





s



b

[(
maxs 1

)

p 2

]



vp




t

[
p 2

]

b
[
p l1

]









s

l2 : want′(j, 3),

4 ≥ 5 , 3 ≥ 0





sr

[
b

[
maxs 4

p 5

]]

vp




t

[
p 5

]

b

[
p l2

]





sf

[
b

[
maxs 4

p 0

]]





34

Case 2.2: NP in a finite clause (Cont.)

(15) John wants to like everybody

l1 : like′(j, x),

1 ≥ l1




s

[
b
[
maxs 1

]]

...





s np2

l2 : want′(j, 2),

4 ≥ l2, 2 ≥ 0

l3 : every′(x, 5 , 6), l4 : person′(x),

5 ≥ l4, 7 ≥ l3, 6 ≥ 8





sr

[
b

[
maxs 4

]]

sf

[
t

[
maxs 4

]]





[
np

[
t

[
maxs 7

mins 8

]]]

We have: 4 = 1 = 7 over l2 : want′(j, 2) and over l3 : every′(x, 5)

Ambiguous between want > every and every > want.

35

Case 2.3: NP nested inside NP

(16) Two policemen spy on someone from every city

(17)
a. 2 > ∃ > ∀ b. ∃ > ∀,2

c. 2 > ∀ > ∃ d. ∀ > ∃ > 2 e. * ∀ > 2 > ∃

• Reading (e) needs to be ruled out: when the nested ∀ has scope
over its host ∃, it must have immediate scope over it and thus
the quantifier 2 is not allowed to intervene.

36

Case 2.3 (Cont.)

• Problem: how to express “immediateness” for the nested ∀ ?
So far, we can only express:

– Nuclear scope of ∃ ≥ maxs of ∀. But readings d and e.

– Nuclear scope of 2 ≥ maxs of ∀. But readings b and e.

• Proposal: two changes in our formal lg of underspecified
representations:

1. So far, our scope constraints had the form n ≥ l or n ≥ n .
Now we’ll also have l ≥ n .

2. Consider the quantifier sem representations l1 : Qu1(x, 1 , 2)
and l2 : Qu2(x, 3 , 4). So far, to express that Qu1 must
scope over Qu2, we used the constraint 2 ≥ l2. Now we’ll
express it using the constraint: 2 ≥ 4 .

37

(18) someone from every city

l4 : some′(y, 7 , 8),

9 ≥ 8 , 8 ≥ 10

[
n

[
t

[
maxs l4

]]]

n

l6 : 17 ∧ 18 , l7 : from′(y, z),

17 ≥ 19 , 18 ≥ l7





nr

[
b

[
maxs 12

]]

np

[
t

[
maxs 12

mins l7

]]




np

l8 : every′(z, 13 , 14),

15 ≥ 14 , 14 ≥ 16

[
np

[
t

[
maxs 15

mins 16

]]]

38

Case 2.3 (Cont.)

(19) Two policemen spy on someone from every city

(20)
a. 2 > ∃ > ∀ b. ∃ > ∀,2

c. 2 > ∀ > ∃ d. ∀ > ∃ > 2 e. * ∀ > 2 > ∃

Result:

• 0 ≥ nuclear scope of 2 ≥ l1 : spy(x, y)
0 ≥ nuclear scope of some ≥ l1 : spy(x, y)

• l4(some) ≥ 14 , i.e. nuclear scope of every ≥ l7(from)

⇒ The nuclear scope of the nested every must be under or
equal to l4 : some′(y, 7 , 8). This means the nested every
must scope under some or immediately above some.

39

Conclusions

Using feature unification in a way parallel to the syntax of TAG,
and taking the derivation tree as sole syntactic input, we have
captured the scopal behavior of different quantificational elements:

1. Attachments to VP-spine have fix surface scope

2. Quantificational NPs have underspecified scope within a scope
window. The upper limit of the scope window is determined by
the operators up the tree:

2.1 Say/think: take as their complement the maxs of embedded
clause, thus stopping that maxs.

2.2 Control/ECM verbs and prepositions (e.g from) do not take
the embedded maxs as their complement but pass it up by
coindexation.

2.3 A host quantificational NP equates maxs from the
embedded predicate to its own formula.

40

