
A Prefix-Correct Earley Recognizer for Multiple Context-Free Grammars

Makoto Kanazawa
National Institute of Informatics

2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430, Japan
kanazawa@nii.ac.jp

Abstract

We present a method for deriving an Ear-
ley recognizer for multiple context-free
grammars with the correct prefix property.
This is done by representing an MCFG by
a Datalog program and applying general-
ized supplementary magic-sets rewriting.
To secure the correct prefix property, a
simple extra rewriting must be performed
before the magic-sets rewriting. The cor-
rectness of the method is easy to see, and a
straightforward application of the method
to tree-adjoining grammars yields a recog-
nizer whose running time is O(n6).

1 Deriving an Earley-style recognizer by
magic-sets rewriting

We use the following 2-MCFG generating
RESP+ = { am

1 a
m
2 b

n
1b

n
2a

m
3 a

m
4 b

n
3b

n
4 | m, n ≥ 1 } as

our running example:1

(1) S (x1y1x2y2) :− P(x1, x2), Q(y1, y2).
P(a1a2, a3a4).
P(a1x1a2, a3x2a4) :− P(x1, x2).
Q(b1b2, b3b4).
Q(b1y1b2, b3y2b4) :− Q(y1, y2).

The equivalence between this MCFG and the fol-
lowing Datalog program (i.e., function-free Horn
clause logic program) is straightforward:

S (i,m) :− P(i, j, k, l), Q(j, k, l,m).
P(i, k, l, n) :− a1(i, j), a2(j, k), a3(l,m),

a4(m, n).
P(i, l,m, p) :− a1(i, j), P(j, k, n, o), a2(k, l),

a3(m, n), a4(o, p).
Q(i, k, l, n) :− b1(i, j), b2(j, k), b3(l,m),

b4(m, n).

(2)

1Note that we are using the notation of elementary for-
mal systems (Smullyan, 1961; Arikawa et al., 1992) aka lit-
eral movement grammars (Groenink, 1997), instead of that
of Seki et al. (1991), to represent MCFG rules.

Q(i, l,m, p) :− b1(i, j), b2(k, l), b3(m, n),
Q(j, k, n, o), b4(o, p).

Nonterminals and terminals of the grammar be-
come intensional and extensional predicates of
the Datalog program, respectively. The pro-
gram (2) together with the extensional database
{a1(0, 1), . . . , an(n − 1, n)} derives S (0, n) if and
only if a1 . . . an is in the language of the grammar
(1).2 Programs like (2) may be used as deduc-
tion systems (Shieber et al., 1995) or uninstanti-
ated parsing systems (Sikkel, 1997) for chart pars-
ing.

As demonstrated by Kanazawa (2007), Datalog
offers an elegant unifying treatment of parsing for
various string and tree grammars as well as tactical
generation (surface realization) from logical forms
reprensented by lambda terms.3 Since deduction
systems for parsing can be thought of as Datalog
programs, we may view various parsing schemata
(Sikkel, 1997) (i.e., mappings from grammars to
deduction systems) as transformations of Datalog
programs.

Magic-sets rewriting of Datalog programs is
a technique to allow bottom-up evaluation to
incorporate top-down prediction. As is well-
understood, if we apply generalized supplemen-
tary magic-sets rewriting (Beeri and Ramakrish-
nan, 1991) to a Datalog program representing a
context-free grammar, the result is essentially the
deduction system for Earley’s algorithm. Let us
see how this technique applies to the program (2)
(see Ullman (1989a; 1989b) for exposition).

First, adornments are attached to predicates,
which indicate the free/bound status of each argu-

2If i is a natural number, we let “i” stand for the constant
symbol representing i. We let “0”, “1”, etc., stand for them-
selves.

3Not only does the Dataog representation imply the exis-
tence of a polynomial-time algorithm for recognition, but it
also serves to establish the tight complexity bound, namely
LOGCFL, which presumably is a small subclass of P. See
Kanazawa (2007) for details.

1: S bf(i,m) :− Pbfff(i, j, k, l), Qbbbf(j, k, l,m).
2: Pbfff(i, k, l, n) :− abf

1 (i, j), abf
2 (j, k), aff

3(l,m), abf
4 (m, n).

3: Pbfff(i, l,m, p) :− abf
1 (i, j), Pbfff(j, k, n, o), abf

2 (k, l), afb
3 (m, n), abf

4 (o, p).
4: Qbbbf(i, k, l, n) :− bbf

1 (i, j), bbb
2 (j, k), bbf

3 (l,m), bbf
4 (m, n).

5: Qbbbf(i, l,m, p) :− bbf
1 (i, j), bfb

2 (k, l), bbf
3 (m, n), Qbbbf(j, k, n, o), bbf

4 (o, p).

Figure 1: Adorned Datalog program.

ment in top-down evaluation of the program (Fig-
ure 1). These adornments determine what argu-
ments newly created predicates take in the new
program.

There are two classes of new predicates. For
each intensional predicate A, a corresponding
magic predicate m A is created, which takes only
the bound arguments of A as its arguments. For
each rule with n subgoals, supplementary predi-
cates supi. j for j = 1, . . . , n − 1 are introduced,
where i is the rule number. The set of arguments
of supi. j is the intersection of two sets: the first set
consists of the bound variables in the head of the
rule and the variables in the first j subgoals, while
the second set consists of the variables in the re-
maining subgoals and the head. The new program
is in Figure 2. The rules for the magic predicates
express top-down prediction, while the remaining
rules serve to binarize the original rules, adding
magic predicates as extra subgoals.

The program in Figure 2 can be used as a correct
recognizer in combination with the control algo-
rithm in Kanazawa (2007). This algorithm, how-
ever, reads the entire input string before accepting
or rejecting it, so it cannot satisfy the correct pre-
fix property with any program.4 For this reason,
we use the following alternative control algorithm
in this paper, which is designed to reject the input
as soon as the next input symbol no longer im-
mediately contributes to deriving new facts. Note
that the input string a1 . . . an is represented by an
extensional database {a1(0, 1), . . . , an(n − 1, n)}.

Chart recognizer control algorithm

1. () Initialize the chart to the empty
set, the agenda to the singleton {m S (0)}, and
i to 0.

2. Repeat the following steps:
4A recognizer is said to have the correct prefix property

or to be prefix-correct if it processes the input string from left
to right and rejects as soon as the portion of the input that has
been processed so far is not a prefix of any element of the
language.

(a) Repeat the following steps until the
agenda is exhausted:

i. Remove a fact from the agenda and
call it the trigger.

ii. Add the trigger to the chart.
iii. (/) Generate all

facts that are immediate conse-
quences of the trigger together with
all facts in the chart, and add to the
agenda those generated facts that
are neither already in the chart nor
in the agenda.

(b) If there is no more fact in the input
database, go to step 3.

(c) i. Remove the next fact ai+1(i, i + 1)
from the input database and call it
the trigger.

ii. () Generate all facts that are im-
mediate consequences of the trigger
together with all facts in the chart,
and add the generated facts to the
agenda.

iii. If the agenda is empty, reject the in-
put; otherwise increment i.

3. If S (0, i) is in the chart, accept; otherwise re-
ject.

The trace of this recognizer on input a1a2a3a4
is as follows, where the generated facts are listed
in the order they enter the agenda (assuming that
the agenda is first-in first-out), together with the
type of inference, rule, and premises used to derive
them:

1. m S (0)

2. m P(0) , r1, 1
3. sup2.1(0, 1) , r6, 2, a1(0, 1)
4. sup3.1(0, 1) , r9, 2, a1(0, 1)
5. m P(1) , r3, 4
6. sup2.2(0, 2) , r7, 3, a2(1, 2)
7. sup2.3(0, 2, 2, 3) , r8, 6, a3(2, 3) !!
8. P(0, 2, 2, 4) , r21, 7, a4(3, 4)
9. sup1.1(0, 2, 2, 4) , r5, 1, 8

10. m Q(2, 2, 4) , r2, 9

r1 : m P(i) :− m S (i).
r2 : m Q(j, k, l) :− sup1.1(i, j, k, l).
r3 : m P(j) :− sup3.1(i, j).
r4 : m Q(j, k, n) :− sup5.3(i, j, k, l,m, n).

r5 : sup1.1(i, j, k, l) :− m S (i), P(i, j, k, l).
r6 : sup2.1(i, j) :− m P(i), a1(i, j).
r7 : sup2.2(i, k) :− sup2.1(i, j), a2(j, k).
r8 : sup2.3(i, k, l,m) :− sup2.2(i, k), a3(l,m).
r9 : sup3.1(i, j) :− m P(i), a1(i, j).

r10 : sup3.2(i, k, n, o) :− sup3.1(i, j), P(j, k, n, o).
r11 : sup3.3(i, l, n, o) :− sup3.2(i, k, n, o), a2(k, l).
r12 : sup3.4(i, l,m, o) :− sup3.3(i, l, n, o), a3(m, n).

r13 : sup4.1(i, j, k, l) :− m Q(i, k, l), b1(i, j).
r14 : sup4.2(i, k, l) :− sup4.1(i, j, k, l), b2(j, k).
r15 : sup4.3(i, k, l,m) :− sup4.2(i, k, l), b3(l,m).
r16 : sup5.1(i, j, l,m) :− m Q(i, l,m), b1(i, j).
r17 : sup5.2(i, j, k, l,m) :− sup5.1(i, j, l,m), b2(k, l).
r18 : sup5.3(i, j, k, l,m, n) :− sup5.2(i, j, k, l,m), b3(m, n).
r19 : sup5.4(i, l,m, o) :− sup5.3(i, j, k, l,m, n), Q(j, k, n, o).

r20 : S (i,m) :− sup1.1(i, j, k, l), Q(j, k, l,m).
r21 : P(i, k, l, n) :− sup2.3(i, k, l,m), a4(m, n).
r22 : P(i, l,m, p) :− sup3.4(i, l,m, o), a4(o, p).
r23 : Q(i, k, l, n) :− sup4.3(i, k, l,m), b4(m, n).
r24 : Q(i, l,m, p) :− sup5.4(i, l,m, o), b4(o, p).

Figure 2: The result of applying generalized supplementary magic-sets rewriting to the program in
Figure 1.

Although the input is correctly rejected, the
correct-prefix property is violated at line 7. The
problem comes from the fact that in rule r8 of Fig-
ure 2, both arguments of a3 are free (see the adorn-
ment on a3 in rule 2 of Figure 1). This means that
a3 is predicted somewhere, but not necessarily at
the current position in the input string. So after a3
is scanned at position 2, there is no guarantee that
the input that has been processed so far is a cor-
rect prefix. In fact, the problem is even worse, as
this particular recognizer fails to accept any input
string. On input a1a2b1b2a3a4b3b4, for example,
the recognizer proceeds as above up to line 6, but
then rejects the input, since no scan move is possi-
ble on b1.5

2 Securing the correct prefix property by
adding redundant subgoals

In order to produce a prefix-correct recognition al-
gorithm by magic-sets rewriting, it is necessary to
ensure that in the program to be rewritten, the first
argument of all extensional predicates is adorned
as bound. To achieve this, we need an extra rewrit-
ing of the Datalog program corresponding to the
given MCFG before applying magic-sets rewrit-
ing.

In the Datalog program representing an MCFG,
occurrences of variables in the body of a rule come
in pairs, with each pair corresponding to an oc-
currence of a symbol (terminal or string variable)
in the head of the corresponding MCFG rule. We

5The problem with the program in Figure 2 is essentially
the same as the one that Johnson (1994) discusses in the con-
text of top-down recognition for tree-adjoining grammars,
first noted by Lang.

will rewrite the Datalog program in such a way
that the modified program satisfies the following
property:

• The order of (the first occurrences of) the
pairs of variables in the body of a rule corre-
spond to the order of the corresponding sym-
bol occurrences in the MCFG rule.

This will make sure that the first arguments of all
extensional predicates are adorned as bound.6

In order to achieve this, we split each 4-ary in-
tensional predicate R(i, j, k, l) into two predicates,
R1(i, j) and R(i, j, k, l). The predicate R(i, j, k, l) re-
tains its original meaning, while the new predicate
R1(i, j) intuitively means ∃kl.R(i, j, k, l). Where an
old rule has R(i, j, k, l) in its right-hand side, the
new rule has R1(i, j) and R(i, j, k, l) in its right-
hand side; the positions of R1(i, j) and R(i, j, k, l)
will be dictated by the positions of the symbols
corresponding to (i, j) and (k, l) in the MCFG rule.
Since R1(i, j) is derivable whenever R(i, j, k, l) is,
this will not alter the least fixpoint semantics of
the rule.

For instance, this procedure rewrites the third
rule of the original program (2) as follows:

(3) P(i, l,m, p) :− a1(i, j), P1(j, k), a2(k, l),
a3(m, n), P(j, k, n, o), a4(o, p).

6This assumes a normal form for MCFGs characterized
by the following condition:

• If A(t1, . . . , tr) :− B1(x1,1, . . . , x1,r1), . . . , Bm(xm,1, . . . , xm,rm)
is a rule, then t1 . . . tr ∈ (Σ ∪ X)∗xi, j(Σ ∪ X)∗xi,k(Σ ∪ X)∗
implies j < k, where X = { xi, j | 1 ≤ i ≤ m, 1 ≤ j ≤ ri }.

This normal form corresponds to what Villemonte de la
Clergerie (2002a; 2002b) called ordered simple RCG.

S (i,m) :− P1(i, j), Q1(j, k), P(i, j, k, l), Q(j, k, l,m).
P1(i, k) :− aux2(i, k).
P(i, k, l, n) :− aux2(i, k), a3(l,m), a4(m, n).
aux2(i, k) :− a1(i, j), a2(j, k).
P1(i, l) :− aux3(i, j, k, l).
P(i, l,m, p) :− aux3(i, j, k, l), a3(m, n), P(j, k, n, o),

a4(o, p).
aux3(i, j, k, l) :− a1(i, j), P1(j, k), a2(k, l).
Q1(i, k) :− aux4(i, k).
Q(i, k, l, n) :− aux4(i, k), b3(l,m), b4(m, n).
aux4(i, k) :− b1(i, j), b2(j, k).
Q1(i, l) :− aux5(i, j, k, l).
Q(i, l,m, p) :− aux5(i, j, k, l), b3(m, n), Q(j, k, n, o),

b4(o, p).
aux5(i, j, k, l) :− b1(i, j), Q1(j, k), b2(k, l).

Figure 3: Rewritten Datalog program.

Note the correspondence with the MCFG rule:

(4) P(
i
a1

j
x1

k
a2

l
,

m
a3

n
x2

o
a4

p
) :− P(x1, x2).

A rule for P1 is obtained from (3) by discarding
the last three subgoals, which pertain to string po-
sitions in the second argument of the head of (4):

(5) P1(i, l) :− a1(i, j), P1(j, k), a2(k, l).

We then fold the common part of (5) and (3), creat-
ing an auxiliary predicate aux3 (the subscript indi-
cates the rule number from the original program):

P1(i, l) :− aux3(i, j, k, l).

P(i, l,m, p) :− aux3(i, j, k, l), a3(m, n),
P(j, k, n, o), a4(o, p).

aux3(i, j, k, l) :− a1(i, j), P1(j, k), a2(k, l).

The above description is for 2-MCFGs, but
the procedure is applicable to the Datalog pro-
gram representing any MCFG. In the general
case, a 2m-ary predicate R(i1, . . . , i2m) is split into
m predicates, R1(i1, i2), . . . ,Rm−1(i1, . . . , i2m−2),
R(i1, . . . , i2m), and m − 1 auxiliary predicates are
introduced, one for each Ri. We call this rewriting
procedure redundancy introduction.

The result of applying redundancy introduction
to the program (2) is in Figure 3. Figure 4 shows
the adornments. Note that the adornments on the
boldface predicate occurrences in Figure 4 are ad-
justed to “less bound” patterns in order to satisfy
the unique binding property. This is justified by

1: S bf(i,m) :− Pbf
1 (i, j), Qbf

1 (j, k), Pbbbf(i, j, k, l),
Qbbbf(j, k, l,m).

2: Pbf
1 (i, k) :− auxbf

2 (i, k).
3: Pbbbf(i, k, l, n) :− auxbf

2
(i, k), abf

3 (l,m),

a
bf
4 (m, n).

4: auxbf
2 (i, k) :− abf

1 (i, j), abf
2 (j, k).

5: Pbf
1 (i, l) :− auxbfff

3 (i, j, k, l).
6: Pbbbf(i, l,m, p) :− auxbfff

3
(i, j, k, l), abf

3 (m, n),

Pbfff(j, k, n, o), abf
4 (o, p).

7: auxbfff
3 (i, j, k, l) :− abf

1 (i, j), Pbf
1 (j, k), abf

2 (k, l).
8: Qbf

1 (i, k) :− auxbf
4 (i, k).

9: Qbbbf(i, k, l, n) :− auxbf
4

(i, k), bbf
3 (l,m), bbf

4 (m, n).

10: auxbf
4 (i, k) :− bbf

1 (i, j), bbf
2 (j, k).

11: Qbf
1 (i, l) :− auxbfff

5 (i, j, k, l).
12: Qbbbf(i, l,m, p) :− auxbfff

5
(i, j, k, l), bbf

3 (m, n),

Qbbbf(j, k, n, o), bbf
4 (o, p).

13: auxbfff
5 (i, j, k, l) :− bbf

1 (i, j), Qbf
1 (j, k), bbf

2 (k, l).

Figure 4: Adorned version of the program in Fig-
ure 3.

viewing, for instance, auxbf
2

(i, k) as an abbrevia-

tion for auxbf
2 (i, k′), k′ =bb k.7 Generalized supple-

mentary magic-sets rewriting applied to Figure 4
results in Figure 5.

The following shows the trace of running the
chart recognizer using the program in Figure 5 on
input a1a2a3a4:

1. m S (0)

2. m P1(0) , r1, 1
3. m aux2(0) , r5, 2
4. m aux3(0) , r7, 2
5. sup4.1(0, 1) , r22, 3, a1(0, 1)
6. sup7.1(0, 1) , r26, 4, a1(0, 1)
7. m P1(1) , r10, 6
8. m aux2(1) , r5, 7
9. m aux3(1) , r7, 7

10. aux2(0, 2) , r39, 5, a2(1, 2)
11. P1(0, 2) , r37, 2, 10
12. sup1.1(0, 2) , r17, 1, 11
13. m Q1(2) , r2, 12
14. m aux4(2) , r11, 13
15. m aux5(2) , r13, 13

The algorithm correctly rejects the input without
making any moves on a3. If the input is

7For the sake of simplicity, we defer explicit use of equal-
ity until Section 4.

r1 : m P1(i) :− m S (i).
r2 : m Q1(j) :− sup1.1(i, j).
r3 : m P(i, j, k) :− sup1.2(i, j, k).
r4 : m Q(j, k, l) :− sup1.3(i, j, k, l).
r5 : m aux2(i) :− m P1(i).
r6 : m aux2(i) :− m P(i, k, l).
r7 : m aux3(i) :− m P1(i).
r8 : m aux3(i) :− m P(i, l,m).
r9 : m P(j, k, n) :− sup6.2(i, j, k, l,m, n).

r10 : m P1(j) :− sup7.1(i, j).
r11 : m aux4(i) :− m Q1(i).
r12 : m aux4(i) :− m Q(i, k, l).
r13 : m aux5(i) :− m Q1(i).
r14 : m aux5(i) :− m Q(i, l,m).
r15 : m Q(j, k, n) :− sup12.2(i, j, k, l,m, n).
r16 : m Q1(j) :− sup13.1(i, j).

r17 : sup1.1(i, j) :− m S (i), P1(i, j).
r18 : sup1.2(i, j, k) :− sup1.1(i, j), Q1(j, k).
r19 : sup1.3(i, j, k, l) :− sup1.2(i, j, k), P(i, j, k, l).
r20 : sup3.1(i, k, l) :− m P(i, k, l), aux2(i, k).
r21 : sup3.2(i, k, l,m) :− sup3.1(i, k, l), a3(l,m).
r22 : sup4.1(i, j) :− m aux2(i), a1(i, j).
r23 : sup6.1(i, j, k, l,m) :− m P(i, l,m), aux3(i, j, k, l).
r24 : sup6.2(i, j, k, l,m, n) :− sup6.1(i, j, k, l,m),

a3(m, n).
r25 : sup6.3(i, l,m, o) :− sup6.2(i, j, k, l,m, n),

P(j, k, n, o).

r26 : sup7.1(i, j) :− m aux3(i), a1(i, j).
r27 : sup7.2(i, j, k) :− sup7.1(i, j), P1(j, k).
r28 : sup9.1(i, k, l) :− m Q(i, k, l), aux4(i, k).
r29 : sup9.2(i, k, l,m) :− sup9.1(i, k, l), b3(l,m).
r30 : sup10.1(i, j) :− m aux4(i), b1(i, j).
r31 : sup12.1(i, j, k, l,m) :− m Q(i, l,m), aux5(i, j, k, l).
r32 : sup12.2(i, j, k, l,m, n) :− sup12.1(i, j, k, l,m),

b3(m, n).
r33 : sup12.3(i, l,m, o) :− sup12.2(i, j, k, l,m, n),

Q(j, k, n, o).
r34 : sup13.1(i, j) :− m aux5(i), b1(i, j).
r35 : sup13.2(i, j, k) :− sup13.1(i, j), Q(j, k).

r36 : S (i,m) :− sup1.3(i, j, k, l), Q(j, k, l,m).
r37 : P1(i, k) :− m P1(i), aux2(i, k).
r38 : P(i, k, l, n) :− sup3.2(i, k, l,m), a4(m, n).
r39 : aux2(i, k) :− sup4.1(i, j), a2(j, k).
r40 : P1(i, l) :− m P1(i), aux3(i, j, k, l).
r41 : P(i, l,m, p) :− sup6.3(i, l,m, o), a4(o, p).
r42 : aux3(i, j, k, l) :− sup7.2(i, j, k), a2(k, l).
r43 : Q1(i, k) :− m Q1(i), aux4(i, k).
r44 : Q(i, k, l, n) :− sup9.2(i, k, l,m), b4(m, n).
r45 : aux4(i, k) :− sup10.1(i, j), b2(j, k).
r46 : Q1(i, l) :− m Q(i), aux5(i, j, k, l).
r47 : Q(i, l,m, p) :− sup12.3(i, l,m, o), b4(o, p).
r48 : aux5(i, j, k, l) :− sup13.2(i, j, k), b2(k, l).

Figure 5: The result of applying generalized supplementary magic-sets rewriting to the program in
Figure 4.

a1a2b1b2a3a4b3b4 instead, the execution of the al-
gorithm continues as follows:

16. sup10.1(2, 3) , r30, 14, b1(2, 3)
17. sup13.1(2, 3) , r34, 15, b1(2, 3)
18. m Q1(3) , r16, 17
19. m aux4(3) , r11, 18
20. m aux5(3) , r13, 18
21. aux4(2, 4) , r45, 16, b2(3, 4)
22. Q1(2, 4) , r43, 13, 21
23. sup1.2(0, 2, 4) , r18, 12, 22
24. m P(0, 2, 4) , r3, 23
25. sup3.1(0, 2, 4) , r20, 24, 10
26. sup3.2(0, 2, 4, 5) , r21, 25, a3(4, 5)
27. P(0, 2, 4, 6) , r38, 26, a4(5, 6)
28. sup1.3(0, 2, 4, 6) , r19, 23, 27
29. m Q(2, 4, 6) , r4, 28
30. sup9.1(2, 4, 6) , r28, 29, 21
31. sup9.2(2, 4, 6, 7) , r29, 30, b3(6, 7)
32. Q(2, 4, 6, 8) , r44, 31, b4(7, 8)
33. S (0, 8) , r36, 28, 32

Needless to say, the program that we obtain with
our method has room for optimization. For in-
stance, rules of the form m aux(i) :− R(i, j, k) are
useless in the presence of m aux(i) :− R1(i), so
they can be safely removed. Nevertheless, the rec-
ognizer produced by our method is always correct
and satisfies the correct prefix property without
any such fine-tuning.

3 Correctness of the method

It is easy to prove that the Datalog program P that
we obtain from an MCFG G after redundancy in-
troduction and magic-sets rewriting is correct in
the sense that for any string a1 . . . an,

P ∪ {m S(0), a1(0, 1), . . . , an(n − 1, n)} ` S (0, n)

iff a1 . . . an ∈ L(G).

Since the initial Datalog program is correct (in
the sense of the above biconditional with m S (0)

omitted) and magic-sets rewriting preserves cor-
rectness (modulo m S (0)), it suffices to prove that
the redundancy introduction transformation pre-
serves correctness.

Let P be a Datalog program representing a 2-
MCFG and let P′ be the result of applying re-
dundancy introduction to P. Let R be any 4-ary
intensional predicate in P, D be an extensional
database, and c, d, e, f be constants in D. It is easy
to see that

P′∪D ` R(c, d, e, f) implies P′∪D ` R1(c, d),

and using this, we can prove by straightforward
induction that

P∪D ` R(c, d, e, f) iff P′∪D ` R(c, d, e, f).

The general case of m-MCFGs is similar.
It is also easy to see that our control algo-

rithm is complete with respect to any Datalog pro-
gram P obtained from an MCFG by redundancy
introduction and magic-sets rewriting. Observ-
ing that all facts derivable from P together with
{m S (0), a1(0, 1), . . . , an(n − 1, n)} have the form
R(i1, . . . , im) where i1 ≤ · · · ≤ im, and rules in-
volving an extensional predicate a all have the
form P(. . . , j) :− R(. . . , i), a(i, j), we can prove
by induction that our control algorithm generates
all derivable facts R(i1, . . . , im) before making any
scan moves on aim+1.

It remains to show the correct prefix property.
We call an MCFG reduced if every nontermi-
nal denotes a non-empty relation on strings. Let
P be the Datalog program obtained by apply-
ing redundancy introduction to a program repre-
senting a reduced 2-MCFG. By the correspon-
dence between magic-sets rewriting and SLD-
resolution (Brass, 1995), it suffices to show that
SLD-resolution (with the leftmost selection func-
tion) using program P has a property which corre-
sponds to prefix-correctness.

Let Γ and ∆ denote negative clauses, and let �
denote the empty clause. We write

Γ
P,D
=⇒ ∆

to mean that there exists an SLD-derivation start-
ing from goal Γ and ending in goal ∆, using rules
in P and exactly the facts in D as input clauses.
We call D a string database if D is isomorphic to
{a1(0, 1), . . . , an(n − 1, n)}. It is easy to see that if

S (0, x)
P,D
=⇒ Γ, then D is a string database.

Theorem 1. If S (0, x)
P,D
=⇒ Γ, then Γ

P,D′
=⇒ � for

some D′ such that D ∪ D′ is a string database.

This is the desired property corresponding to
prefix-correctness. The theorem can be proved
with the help of the following lemma.

Lemma 2. Let R be a 4-ary intensional predicate
in P. For every string database D and constants
c, d in D such that P ∪ D ` R1(c, d), if e is a con-
stant not in D, there exists a string database D′

whose constants are disjoint from those of D such
that P ∪ D ∪ D′ ` R(c, d, e, f) for some constant f
in D′.

Again, the general case of m-MCFGs can be
treated similarly.

4 Application to tree-adjoining
grammars

So far, we have implicitly assumed that the empty
string ε does not appear as an argument in the head
of MCFG rules. Since ε can be eliminated from
any MCFG generating an ε-free language (Seki et
al., 1991), this is not an essential restriction, but it
is often convenient to be able to handle rules in-
volving ε directly, as is the case with 2-MCFGs
representing TAGs. To translate an MCFG rule
with ε into a Datalog rule, we use range-restricted
equality as an extensional predicate. For example,
a 2-MCFG rule

A(x, ε) :− B(x).

is translated into Datalog as follows:8

A(i, j, k, l) :− B(i, j), k = l.

Rewritten Datalog programs will now involve
equality. We continue to represent the in-
put string a1 . . . an as an extensional database
{ a1(0, 1), . . . , an(n − 1, n)}, but modify our con-
trol algorithm slightly:

Chart recognizer control algorithm (revised)
Same as before, except for the following two steps:

1. () Initialize the chart to the empty
set, the agenda to {m S (0), 0 = 0}, and i to 0.

2. (c) iii. If the agenda is empty, reject the in-
put; otherwise increment i, and then
add the fact i = i to the agenda.

8Since equality is treated as an extensional predicate, rules
like this are safe in the sense that they can derive ground facts
only.

To obtain an O(n6) prefix-correct Earley recog-
nizer for TAGs by our method, we translate each
nonterminal node of an elementary tree into a 2-
MCFG rule. For each such node M, the 2-MCFG
has a distinct nonterminal symbol M, whose arity
is either 2 or 1 depending on whether the node M
dominates the foot node or not.

Let M be a node dominating a foot node hav-
ing children L1, . . . , L j,N,R1, . . . ,Rk, of which N
is the child on the path to the foot node. For each
elementary tree γ with root node T that can adjoin
into M, the 2-MCFG has the rule

(6) M(w1x1 . . . x jz1, z2y1 . . . ykw2) :−
T (w1,w2), L1(x1), . . . , L j(x j), N(z1, z2),
R1(y1), . . . ,Rk(yk).

If adjunction is optional at M, the 2-MCFG also
has the rule

M(x1 . . . x jz1, z2y1 . . . yk) :−
L1(x1), . . . , L j(x j), N(z1, z2), R1(y1), . . . ,Rk(yk).

Let F be a foot node. For each elementary tree
γ with root node T that can adjoin into F, the 2-
MCFG has the rule

F(w1,w2) :− T (w1,w2).

If adjunction is optional at F, the 2-MCFG also
has the rule

F(ε, ε).

We omit the other cases, but they are all straight-
forward.

The translation into Datalog of the 2-MCFG
thus obtained results in a variant of Lang’s Horn
clause axiomatization of TAGs (discussed by
Johnson (1994)). For example, consider (6) with
j = k = 2:

(7) M(w1x1x2z1, z2y1y2w2) :− T (w1,w2), L1(x1),
L2(x2), N(z1, z2), R1(y1), R2(y2).

The Datalog representation of (7) is the following:

(8) M(i,m, n, r) :− T (i, j, q, r), L1(j, k), L2(k, l),
N(l,m, n, o), R1(o, p), R2(p, q).

Redundancy introduction rewrites (8) into three
rules:

(9) M1(i,m) :− aux(i, j, l,m).
M(i,m, n, r) :− aux(i, j, l,m), N(l,m, n, o),

R1(o, p), R2(p, q), T (i, j, q, r).
aux(i, j, l,m) :− T1(i, j), L1(j, k), L2(k, l),

N1(l,m).

m aux(i) :− m M1(i).
m aux(i) :− m M(i,m, n).
m N(l,m, n) :− sup2.1(i, j, l,m, n).
m R1(o) :− sup2.2(i, j,m, n, o).
m R2(p) :− sup2.3(i, j,m, n, p).
m T (i, j, q) :− sup2.4(i, j,m, n, q).
m T1(i) :− m aux(i).
m L1(j) :− sup3.1(i, j).
m L2(k) :− sup3.2(i, j, k).
m N1(l) :− sup3.3(i, j, l).

sup2.1(i, j, l,m, n) :− m M(i,m, n), aux(i, j, l,m).
sup2.2(i, j,m, n, o) :− sup2.1(i, j, l,m, n), N(l,m, n, o).
sup2.3(i, j,m, n, p) :− sup2.2(i, j,m, n, o), R1(o, p).
sup2.4(i, j,m, n, q) :− sup2.3(i, j,m, n, p), R2(p, q).
sup3.1(i, j) :− m aux(i), T1(i, j).
sup3.2(i, j, k) :− sup3.1(i, j), L1(j, k).
sup3.3(i, j, l) :− sup3.2(i, j, k), L2(k, l).

M1(i,m) :− m M1(i), aux(i, j, l,m).
M(i,m, n, r) :− sup2.4(i, j,m, n, q), T (i, j, q, r).
aux(i, j, l,m) :− sup3.3(i, j, l), N1(l,m).

Figure 6: The result of applying generalized sup-
plementary magic-sets rewriting to the three rules
in (9).

Finally, the generalized supplementary magic-sets
rewriting yields the rules in Figure 6. Each rule
in Figure 6 involves at most 6 variables, while the
arity of predicates is at most 5. It is easy to see
that this holds in general; it follows that the time
and space complexity of the recognizer for TAGs
produced by our method is O(n6) and O(n5), re-
spectively.

5 Comparison with previous approaches

Prefix-correct Earley-like recognizers for MCFGs
have been presented before (Matsumura et al.,
1989; Harkema, 2001; Albro, 2002; Villemonte
de la Clergerie, 2002a; Villemonte de la Clergerie,
2002b). The recognizer obtained by our method
seems to be slightly different from each of them,
but the main advantage of our approach lies not in
the resulting recognizer, but in how it is obtained.
Unlike previous approaches, we borrow a well-
known and well-understood technique from de-
ductive database theory, namely magic-sets rewrit-
ing, to automatically derive an Earley-style recog-
nizer. Since the parsing schema for Earley’s algo-
rithm can be regarded as a special case of gener-
alized supplementary magic-sets rewriting, there

is a precise sense in which our recognizer may
be called an Earley recognizer. We have used an
ad hoc but simple and easy-to-understand rewrit-
ing (redundancy introduction) to secure the correct
prefix property, and it is the only step in our ap-
proach specifically tailor-made for MCFGs.

The application of our method to TAGs in
turn uses a completely straightforward encoding
of TAGs into Datalog programs (via 2-MCFGs),
which is close to Lang’s Horn clause axiomatiza-
tion. (Lang’s encoding itself can be used to the
same effect.) The resulting recognizer for TAGs
is prefix-correct and runs in time O(n6) and space
O(n5), which is the same as the best known bound
for prefix-correct recognizers for TAGs (Nederhof,
1999). The behavior of our recognizer on Neder-
hof’s (1999) example roughly corresponds to that
of Nederhof’s recognizer, but there is a significant
difference between the two in the indices involved
in some of the items. More importantly, unlike
Nederhof’s, our recognizer is a special case of a
more general construction, and the time and space
complexity bounds are obtained without any fine-
tuning.

Since it involves very little non-standard tech-
nique, we believe that our method is easier to un-
derstand and easier to prove correct than previous
approaches. For this reason, we also hope that this
work serves useful pedagogical purposes.

References
Albro, Daniel M. 2002. An Earley-style parser

for multiple context-free grammars. Unpublished
manuscript, UCLA.

Arikawa, Setsuo, Takeshi Shinohara, and Akihiro Ya-
mamoto. 1992. Learning elementary formal sys-
tems. Theoretical Computer Science, 95(1):97–113.

Beeri, Catriel and Raghu Ramakrishnan. 1991. On
the power of magic. Journal of Logic Programming,
10(3–4):255–299.

Brass, Stefan. 1995. Magic sets vs. SLD-resolution. In
Eder, J. and L. A. Kalinichenko, editors, Advances
in Databases and Information Systems, pages 185–
203. Springer, Berlin.

Groenink, Annius. 1997. Surface without Structure.
Ph.D. thesis, Utrecht University.

Harkema, Hendrik. 2001. Parsing minimalist lan-
guages. Ph.D. thesis, UCLA.

Johnson, Mark. 1994. Logical embedded push-down
automata in tree-adjoining grammar parsing. Com-
putational Intelligence, 10(4):495–505.

Kanazawa, Makoto. 2007. Parsing and generation as
Datalog queries. In Proceedings of the 45th Annual
Meeting of the Association for Computational Lin-
guistics, pages 176–183.

Matsumura, Takashi, Hiroyuki Seki, Mamoru Fujii,
and Tadao Kasami. 1989. Some results on multi-
ple context-free grammars. IEICE Technical Report,
COMP 88–78:17–26. In Japanese.

Nederhof, Mark-Jan. 1999. The computational com-
plexity of the correct-prefix property for TAGs.
Computational Linguistics, 25(3):345–360.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

Shieber, Stuart M., Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementations of
deductive parsing. Journal of Logic Programming,
24(1–2):3–36.

Sikkel, Klaas. 1997. Parsing Schemata. Springer,
Berlin.

Smullyan, Raymond M. 1961. Theory of Formal Sys-
tems. Princeton University Press, Princeton, N.J.

Ullman, Jeffrey D. 1989a. Bottom-up beats top-down
in Datalog. In Proceedings of the Eighth ACM Sym-
posium on Principles of Database Systems, pages
140–149.

Ullman, Jeffrey D. 1989b. Principles of Database and
Knowledge-Base Systems. Volume II: The New Tech-
nologies. Computer Science Press, Rockville, M.D.

Villemonte de la Clergerie, Éric. 2002a. Parsing MCS
languages with thread automata. In Proceedings of
the Sixth International Workshop on Tree Adjoining
Grammar and Related Frameworks (TAG+6), pages
101–108.

Villemonte de la Clergerie, Éric. 2002b. Parsing
mildly context-sensitive languages with thread au-
tomata. In Proceedings of the 19th International
Conference on Computational Linguistics, pages 1–
7.

